Glacier melt: a review of processes and their modelling

Regine Hock

Progress in Physical Geography 2005; 29; 362
DOI: 10.1191/0309133305pp453ra

The online version of this article can be found at:
http://ppg.sagepub.com/cgi/content/abstract/29/3/362

Published by:
SAGE Publications
http://www.sagepublications.com

Additional services and information for *Progress in Physical Geography* can be found at:

Email Alerts: http://ppg.sagepub.com/cgi/alerts

Subscriptions: http://ppg.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations (this article cites 29 articles hosted on the SAGE Journals Online and HighWire Press platforms):
http://ppg.sagepub.com/cgi/content/refs/29/3/362
Glacier melt: a review of processes and their modelling

Regine Hock

Institute for Atmospheric and Climate Science Swiss Federal Institute of Technology, CH-8057 Zürich, Switzerland, and Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden

Abstract: Modelling ice and snow melt is of large practical and scientific interest, including issues such as water resource management, avalanche forecasting, glacier dynamics, hydrology and hydrochemistry, as well as the response of glaciers to climate change. During the last few decades, a large variety of melt models have been developed, ranging from simple temperature-index to sophisticated energy-balance models. There is a recent trend towards modelling with both high temporal and spatial resolution, the latter accomplished by fully distributed models. This review discusses the relevant processes at the surface-atmosphere interface, and their representation in melt models. Despite considerable advances in distributed melt modelling there is still a need to refine and develop models with high spatial and temporal resolution based on moderate input data requirements. While modelling of incoming radiation in mountain terrain is relatively accurate, modelling of turbulent fluxes and spatial and temporal variability in albedo constitute major uncertainties in current energy-balance melt models, and thus need further research.

Key words: distributed models, energy balance, glacier melt, modelling, temperature-index models.

I Introduction
I Background
Glacier ice and snow cover exert a major control on the dynamics of the Earth with respect to both climate and hydrology. From a climatologic point of view, snow and ice play an important role, interacting with the atmosphere over a range of spatial and temporal scales involving complex and sensitive feedback mechanisms. From a hydrological perspective, glaciers represent important water resources, contributing significantly to streamflow. Glaciers exert a considerable influence on catchment hydrology, especially in mountain areas, by temporarily storing water as snow and ice on many timescales (Jansson et al., 2003). Typical characteristics of glacier runoff involve marked melt-induced diurnal cyclicity and a concentration of annual flow during the melt season (Figure 1). An increasing demand for fresh water has stimulated the need to predict melt-derived streamflow as a basis for efficient water resource management, with respect to issues such as water supply, management of hydroelectric facilities and flood forecasting. The success of modelling glacier-derived runoff strongly depends on the formulation of the melt process. Melt modelling has traditionally been motivated by runoff forecasts, but in...
recent years interest has risen, in particular in spatially distributed estimates of snow and ice melt for many other purposes. These include avalanche forecasts, assessment of the contribution of melting ice to sea-level rise, as well as studies in glacier dynamics, hydrochemistry and erosion.

Meltwater production, in particular from snow cover, has received extensive examination in terms of both measurements and modelling. There is a complete hierarchy of melt models relating ablation to meteorological conditions, varying greatly in complexity and scope. These range from models based on the detailed evaluation of the surface energy fluxes (energy-balance models) to models using air temperature as the sole index of melt energy (temperature-index models). Much work has been done at the point scale. However, promoted by increased availability of digital terrain models and computational power, increasing efforts have been devoted to areal melt modelling using fully distributed models. In addition, there is a trend towards high temporal resolution modelling (e.g., with hourly time steps). The latter is essential for predicting peak flows in glacierized or snow-covered basins. High spatial resolution is needed to account for the large spatial heterogeneity with respect to ice and snow melt typically encountered in steeply sided terrain as a result of the effects of surrounding topography.

Previous reviews have addressed individual aspects of melt and its modelling: Lang (1986) and Röthlisberger and Lang (1987) present an overview of glacier melt and discharge processes. An exhaustive review of radiation and turbulent heat transfer at a snow surface is given by Male and Granger (1981). Male (1980) and Dozier (1987) summarize the processes of snow melt and hydrology. Kirnbauer et al. (1994) focus on distributed snow models. Recent trends in temperature-index melt modelling are discussed in Hock (2003). This review considers recent advances in the simulation of melt, focusing on glaciers and distributed modelling. The relevant processes involved in energy exchange at the glacier surface are discussed with respect to their representation in melt models. Emphasis is on models suitable for...
operational purposes, hence on methods requiring moderate data input.

2 Historical overview

The relationship between glacier behaviour and climate has long been a central issue in glaciology. This applies in particular to mountainous regions, where people have experienced damage to farmlands and villages either by direct advance of a glacier or by glacier outburst floods (e.g., Finsterwalder, 1897; Hoinkes, 1969). Early studies attempted to investigate the causes of glacier fluctuations. Walcher (1773) was one of the first to propose that glacier fluctuations are caused by variations in climatic conditions. Finsterwalder and Schunk (1887) suggested a close relation between air temperature and ablation. Hess (1904) recognized radiation as the most important source of energy for melt. Ångström (1933) stressed the importance of temperature, radiation and wind as agents for melting.

Pioneering work concerning the details of energy exchange between the atmosphere and a glacier surface was performed in the Nordic countries. In the 1920s, Ahlmann related ablation measurements to simultaneous meteorological observations and he derived the first empirical formula for the computation of ablation from known values of incident radiation, air temperature and wind velocity (Ahlmann, 1935; 1948). Sverdrup's study in West Spitzbergen in 1934 provided the foundation for most glacier and snow cover energy transfer studies to follow (Sverdrup, 1935; 1936). He computed a complete energy balance, although primarily focusing on the turbulent heat fluxes. He was the first to apply gradient flux techniques to ice and snow. In the 1940s, Wällén (1949) conducted a detailed glaciometeorological experiment during six successive summers on Kårsaglacier in northern Sweden. He concluded that studies of glacier variations should deal with changes in the total volume of glaciers and not only with front variations.

In the Alps, early comprehensive investigations to quantify the relationships between glacier and climate fluctuations, and to assess the water balance of glacierized catchments, were started in the 1930s (Lütschg-Loetscher, 1944). Hoeck (1952) focused on snow melt and systematically investigated the climatic and topographic variables determining the energy exchange of a snow cover. Detailed investigations of the radiation budget over glacier surfaces were initiated in 1938 at Sonnblick (3100 m a.s.l.) in the Austrian Alps and further developed in the 1950s (Sauberer and Dirmhirn, 1952). A comprehensive study of water, ice and energy budgets was started on several glaciers in Oetztal, Austria, in 1948 and greatly expanded during the International Hydrological Decade in the 1950s (Hoinkes and Untersteiner, 1952; Hoinkes, 1955), during which several long-term mass balance series were initiated (Hoinkes and Steinacker, 1975; Reinwarth and Escher-Vetter, 1999).

Although restricted to snow surfaces, a general and very thorough discussion of snow cover energy exchange and melt processes from both a theoretical and practical viewpoint was given by the Corps of Engineers (1956) and Kuzmin (1961), based on exhaustive studies in the USA and the former Soviet Union, respectively. Their work contained generalized snow melt equations based on theoretical and empirical considerations and formed the basis of many of the snow and ice melt models which were to follow.

In the 1960s, the first computer simulation models of accumulation and ablation processes were developed (Anderson, 1972; Crawford, 1973; WMO, 1986). This early stage of mass balance modelling pertained to snow covers and generally aimed at providing the melt-water input for watershed models. Since then, a large variety of snow models ranging from simple temperature-index models (e.g., Anderson, 1973; Braun and Aellen, 1990) to sophisticated energy-balance models, including simulation of the internal state of the snow cover, have been developed (e.g., Brun et al., 1989). Modelling attempts focusing on
Glaciers and ice sheets began in connection with the growing concern about potentially enhanced greenhouse warming and the effects on global sea level (e.g., Braithwaite and Olesen, 1990a; Oerlemans and Fortuin, 1992), as well as an increased interest in tapping glacial water for hydroelectric purposes (e.g., Braithwaite and Thomsen, 1989; van de Wal and Russel, 1994). The most recent development concerns the incorporation of remote sensing data into melt models, providing a particularly useful tool in basins inaccessible for detailed ground surveys (e.g., Seidel and Martinec, 1993; Reeh et al., 2002). In addition, much effort is focused on enhancing the spatial and temporal resolution of melt models by moving from point-scale to distributed modelling and from, for example, daily time steps to hourly time steps (Burlando et al., 2002).

3 Characteristics of snow and ice relevant to melt

Glacier melt is determined by the energy balance at the glacier-atmosphere interface, which is controlled by the meteorological conditions above the glacier and the physical properties of the glacier itself. Glacier-atmosphere interactions are complex. The atmosphere supplies energy for melt, while atmospheric conditions are modified by the presence of snow and ice due to the specific properties of snow and ice and their high temporal variability. In general, snow and ice are characterized by (Male, 1980; Kuhn, 1984):

- fixed surface temperatures during melting (0°C);
- penetration of shortwave radiation;
- high and largely variable albedo;
- high thermal emissivity;
- variable surface roughness.

Because the surface temperature of a melting snow or ice surface cannot exceed 0°C, strong temperature gradients can develop in the air immediately above the surface. Consequently, during the melt season, the air is generally stably stratified, thus suppressing turbulence. Gradients may reach more than 5 K m⁻¹ within the first 2 m above the surface (Holmgren, 1971; Oerlemans and Grisogono, 2002). Temperature stratification combined with typical glacier surface slopes induces gravity flows (Ohata, 1989; van den Broeke, 1997). On small valley glaciers, this glacier wind typically reaches a maximum between 0.5 and 3 m above the surface. Due to the fact that surface temperature cannot increase beyond 0°C, turbulent fluxes at some point become independent of radiation (Holmgren, 1971; Greuell et al., 1997).

The vapour pressure of a melting surface is 6.11 hPa. This relatively low value favours vapour pressure gradients towards the surface, and leads to condensation. Since the latent heat of evaporation (2.501 × 10⁶ J kg⁻¹ at 0°C) is 7.5 times larger than the latent heat of fusion required for melting of snow and ice (0.334 × 10⁶ J kg⁻¹), condensation can be an important energy source (e.g., Sverdrup, 1935; de Quervain, 1951; Orvig, 1954). With reversed vapour gradients, evaporation occurs, significantly reducing the energy available for melt due to the high energy consumption involved in evaporation. Thus, the process of evaporation is considered to play an important role in maintaining low-latitude glaciers and the present ice sheets (Ohmura et al., 1994).

Shortwave radiation penetrates ice and snow to a depth of about 10 m and 1 m, respectively, depending on their physical properties (Warren, 1982; Oke, 1987). Only about 1–2% of global radiation (shortwave incoming radiation) penetrates into a snow cover (Ohmura, 1981; Konzelmann and Ohmura, 1995), and due to the exponential decline of transmitted radiation most of the energy is absorbed in the first few mm below the surface. However, the process is important for heating the snow cover during pre-melt periods and for internal melting, which may even occur when the surface is frozen due to net outgoing longwave radiation (Holmgren, 1971). La Chapelle (1961) observed measurable amounts of snow...
melting as deep as 20 cm below the summer surface. On Peyto Glacier, 20% of the daily snow melt took place internally as a result of penetration of shortwave radiation (Föhn, 1973). Winther et al. (1996) attributed subsurface melt layers exceeding 0.5 m in thickness in blue ice areas in Antarctica to this process. On glacier ice, internal melting is important for the formation of a low-density ‘weathering crust’ in the top layer of the ice (Müeller and Keeler, 1969; Munro, 1990).

Snow is generally characterized by a higher albedo than ice, varying roughly between 0.7 and 0.9 compared to 0.3 to 0.5 for ice (Paterson, 1994). In the infrared part of the spectrum, both snow and ice behave almost perfect black-bodies (Kondratyev, 1969), with emissivities of about 0.98–0.99 for snow and 0.97 for ice (Müller, 1985). The thermal conductivity of typical snow layers is less than one tenth of that of ice (Table 1), rendering snow a particularly good insulator. Nevertheless, snow temperatures near the surface can drop rapidly during periods of no melt, occurring in particular at high altitudes on clear nights. Combined with high albedo and high thermal emissivity, snow represents a radiative sink during such periods. Its thermal insulating properties prevent efficient compensation of these radiative losses. Snow and ice melt at 0°C. However, melting will not necessarily occur at air temperatures of 0°C, since melt is determined by the surface energy balance which in turn only indirectly is affected by air temperature (Kuhn, 1987).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Typical density</th>
<th>Specific heat capacity</th>
<th>Thermal conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh snow</td>
<td>50–150 kg m(^{-3})</td>
<td>2009 J kg(^{-1}) K(^{-1})</td>
<td>0.08 W m(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>Old snow</td>
<td>200–500 kg m(^{-3})</td>
<td>2009 J kg(^{-1}) K(^{-1})</td>
<td>0.42 W m(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>Ice</td>
<td>900 kg m(^{-3})</td>
<td>2097 J kg(^{-1}) K(^{-1})</td>
<td>2.1 W m(^{-1}) K(^{-1})</td>
</tr>
</tbody>
</table>

II Energy-balance melt models

A physically based approach to compute melt involves the assessment of the energy fluxes to and from the surface. At a surface temperature of 0°C, any surplus of energy at the surface-air interface is assumed to be used immediately for melting. The energy balance in terms of its components is expressed as:

\[
Q_N + Q_H + Q_L + Q_G + Q_R + Q_M = 0 \tag{1}
\]

where \(Q_N\) is net radiation, \(Q_H\) is the sensible heat flux, \(Q_L\) is the latent heat flux (\(Q_G\) and \(Q_L\) are referred to as turbulent heat fluxes), \(Q_G\) is the ground heat flux, i.e., the change in heat of a vertical column from the surface to the depth at which vertical heat transfer is negligible, \(Q_R\) is the sensible heat flux supplied by rain and \(Q_M\) is the energy consumed by melt. As commonly defined in glaciology, a positive sign indicates an energy gain to the surface, a negative sign an energy loss. Melt rates, \(M\) are then computed from the available energy by:

\[
M = \frac{Q_M}{\rho_w L_f} \tag{2}
\]

where \(\rho_w\) denotes the density of water and \(L_f\) the latent heat of fusion. Energy-balance models fall into two categories: point studies and distributed models. The former assess the energy budget at one location, usually the site of a climate station. The latter involve estimating the budget over an area, usually on a square grid.

Examples of point studies on glaciers are given in Table 2 complementing similar summaries by, for example, Ohmura et al. (1992) and Willis et al. (2002). Complete energy budget measurements are seldom available and if so only over short periods of time due to the enormous equipment and maintenance requirements. Hence, methods of computing the energy budget components from standard meteorological observations have been developed and applied in most studies (see Table 2 for references). Despite simplifying assumptions inherent to these methods, they have provided reliable
Table 2 Point energy-balance studies on Alpine valley glaciers. Net radiation Q_N, sensible heat flux Q_H, latent heat flux Q_L, ice heat flux Q_G and the energy for melt Q_M (here defined as negative) are given in W m$^{-2}$. Values in brackets are in % of total energy source or sink. The energy balance does not necessarily balance if Q_M is obtained from ablation measurements instead of from closing the energy balance.

<table>
<thead>
<tr>
<th>Location, m a.s.l., surface type</th>
<th>Period (d = days)</th>
<th>Q_N</th>
<th>Q_H</th>
<th>Q_L</th>
<th>Q_G</th>
<th>Q_M</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernagtferner 2970 m, ice</td>
<td>45 d in Aug + Sep 1950–53</td>
<td>143 (84)</td>
<td>23 (14)</td>
<td>4 (2)</td>
<td>0 (0)</td>
<td>−170 (−100)</td>
<td>Hoinkes, 1955</td>
</tr>
<tr>
<td>Kesselwandferner 3240 m, snow</td>
<td>20 d in 1958</td>
<td>43 (67)</td>
<td>21 (33)</td>
<td>−1 (−2)</td>
<td>64 (−98)</td>
<td>64 (−98)</td>
<td>Ambach and Hoinkes, 1963</td>
</tr>
<tr>
<td>Blue Glacier 2050 m</td>
<td>12.7.–20.8.1958</td>
<td>85 (63)</td>
<td>50 (37)</td>
<td>−3 (−2)</td>
<td>170 (−100)</td>
<td>132 (−98)</td>
<td>La Chapelle, 1959</td>
</tr>
<tr>
<td>Aletsch glacier 2220 m, ice</td>
<td>2.–27.8.1965</td>
<td>129 (71)</td>
<td>38 (21)</td>
<td>14 (8)</td>
<td>−181 (−100)</td>
<td>−181 (−100)</td>
<td>Röthlisberger and Lang, 1987</td>
</tr>
<tr>
<td>Aletsch glacier 3366 m, snow</td>
<td>3.–19.8.1973</td>
<td>44 (92)</td>
<td>4 (8)</td>
<td>−3 (−6)</td>
<td>−45 (−94)</td>
<td>−45 (−94)</td>
<td>Röthlisberger and Lang, 1987</td>
</tr>
<tr>
<td>Worthington Glacier Alaska, ice</td>
<td>16.7.–1.8.1967</td>
<td>127 (51)</td>
<td>68 (29)</td>
<td>47 (20)</td>
<td>−224 (−100)</td>
<td>−224 (−100)</td>
<td>Streten and Wendler, 1968</td>
</tr>
<tr>
<td>Peytog glacier 2510 m</td>
<td>14 d in July 1970</td>
<td>80 (44)</td>
<td>87 (48)</td>
<td>15 (8)</td>
<td>−181 (−100)</td>
<td>−181 (−100)</td>
<td>Föhn, 1973</td>
</tr>
<tr>
<td>Hodges Glacier 460 m</td>
<td>1.11.1973-4.4.1974</td>
<td>47 (54)</td>
<td>42 (46)</td>
<td>−3 (−3)</td>
<td>−86 (−97)</td>
<td>−86 (−97)</td>
<td>Hogg et al., 1982</td>
</tr>
<tr>
<td>St Sorlin Glacier 2700 m</td>
<td>11 d in summer</td>
<td>32 (57)</td>
<td>24 (43)</td>
<td>−4 (−7)</td>
<td>−53 (−93)</td>
<td>−53 (−93)</td>
<td>Martin, 1975</td>
</tr>
<tr>
<td>Hintereisferner ice</td>
<td>10 d in 1986</td>
<td>19 (90)</td>
<td>22 (10)</td>
<td>−4 (−2)</td>
<td>−209 (−98)</td>
<td>−209 (−98)</td>
<td>Greuell and Oerlemans, 1987</td>
</tr>
<tr>
<td>Ivory Glacier</td>
<td>53 d in Jan–Feb 1972/73</td>
<td>76 (52)</td>
<td>44 (30)</td>
<td>23 (16)</td>
<td>−147 (−100)</td>
<td>−147 (−100)</td>
<td>Hay and Fitzharris, 1988</td>
</tr>
<tr>
<td>New Zealand, 1500 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storglaciären 1370 m, ice</td>
<td>19.7.–27.8.1994</td>
<td>73 (66)</td>
<td>33 (30)</td>
<td>5 (5)</td>
<td>−3 (−3)</td>
<td>−122 (−97)</td>
<td>Hock and Holmgren, 1996</td>
</tr>
<tr>
<td>Paterze glacier 2205 m, ice</td>
<td>24.6.–9.9.1994</td>
<td>180 (74)</td>
<td>51 (21)</td>
<td>11 (5)</td>
<td>−242 (−100)</td>
<td>−242 (−100)</td>
<td>van den Broeke, 1997</td>
</tr>
<tr>
<td>Zongo Glacier 5150 m, ice/snow</td>
<td>9/1996–8/1997</td>
<td>17 (65)</td>
<td>6 (23)</td>
<td>−17 (−65)</td>
<td>3 (12)</td>
<td>−9 (−35)</td>
<td>Wagnon et al., 1999</td>
</tr>
<tr>
<td>Morteratschgletscher** 2100 m, ice/snow</td>
<td>1.10.1995–30.9.1998</td>
<td>152 (80)</td>
<td>31 (16)</td>
<td>8 (4)</td>
<td>−191 (−100)</td>
<td>−191 (−100)</td>
<td>Oerlemans, 2000</td>
</tr>
<tr>
<td>Koryto Glacier, Kamchatka, 840 m, snow</td>
<td>10.8.–8.9.2000</td>
<td>43 (33)</td>
<td>59 (44)</td>
<td>31 (33)</td>
<td>−133 (−100)</td>
<td>−133 (−100)</td>
<td>Konya et al., 2004</td>
</tr>
</tbody>
</table>

*Rain supplied 4 W m$^{-2}$ (2%).
**Only when melting occurred.
estimates of ablation. In general, most of the energy used for melt is supplied by radiation, followed by the sensible heat flux and only a minor fraction is derived from latent heat. The importance of net radiation relative to the turbulent fluxes tends to increase with altitude, as a result of reduced turbulent fluxes due to the vertical lapse rates of air temperature and vapour pressure (Röthlisberger and Lang, 1987).

Direct comparisons of different studies should be treated with caution, as most studies extend only over timescales of days or weeks rather than for the entire ablation season. The relative importance of the different components of the energy balance depends strongly on weather conditions and their relative contributions may change during the melt season. On Devon Island Ice Cap, Holmgren (1971) found relative contributions of net radiation, sensible heat flux and the latent heat flux of 70, 20 and 8% on clear-sky days with light winds. On overcast days with strong winds, the percentages changed to 44, 46 and 10%, respectively. In addition, different accuracy in instrumentation and methods of computation restrict such direct comparison. Distributed, grid-based energy-balance studies over ice and snow are comparatively scarce (Table 3). The main challenge for distributed studies is the extrapolation of input data and energy budget components to the entire grid.

1 Net radiation

Net all-wave radiation of a surface is the difference between the incoming and outgoing energies absorbed or emitted by the surface (Kondratyev, 1965). Traditionally, radiation is classified as shortwave or longwave. The former covers the wavelength range of approximately 0.15–4 μm and predominantly originates directly from the sun, whereas the longwave radiation refers to the spectrum of 4–120 μm and is mainly thermal radiation of terrestrial and atmospheric origin. In mountainous regions, the radiative fluxes, in particular the direct sun radiation, vary considerably in space and time as a result of the effects of slope, aspect and effective horizon. These effects include reduction of incoming radiation by obstruction of the sky as well as reflection and emission of the surrounding slopes. Thus, the radiation balance may be written as (Kondratyev, 1965):

\[Q_n = (I + D_s + D_t) \langle 1 - \alpha \rangle + L_t^\pm + L_t^\pm + L^\uparrow \quad (3) \]

where \(I \) is direct solar radiation, \(D_s \) is diffuse sky radiation, \(D_t \) is reflected radiation from the surrounding terrain (\(I + D_s + D_t \) is

Table 3

<table>
<thead>
<tr>
<th>Location</th>
<th>Time resolution</th>
<th>Grid spacing</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glaciers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhonegletscher (18.7 km²)</td>
<td>day</td>
<td>100 m</td>
<td>Funk, 1985</td>
</tr>
<tr>
<td>Vernagtferner (9.1 km²)</td>
<td>half-hour</td>
<td>100 m</td>
<td>Escher-Vetter, 1985b</td>
</tr>
<tr>
<td>Haut Glacier d’ Arolla (6.3 km²)</td>
<td>hour</td>
<td>20 m</td>
<td>Arnold et al., 1996</td>
</tr>
<tr>
<td>Storglaciären (3.1 km²)</td>
<td>hour</td>
<td>30 m</td>
<td>Hock and Noetzli, 1997</td>
</tr>
<tr>
<td>Moteratschgletscher (17.2 km²)</td>
<td>hour</td>
<td>25 m</td>
<td>Klok and Oerlemans, 2002</td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Längental, Austria (9 km²)</td>
<td>hour</td>
<td>25 m</td>
<td>Blöschl et al., 1991</td>
</tr>
<tr>
<td>Tedorigawa basin, Japan (247 km²)</td>
<td>day</td>
<td>540 × 469 m</td>
<td>Ujihashi et al., 1994</td>
</tr>
<tr>
<td>Mount Iwate, Japan (11 km²)</td>
<td>hour</td>
<td>125 m</td>
<td>Ohta, 1994</td>
</tr>
<tr>
<td>Davos (16 km²)</td>
<td>day</td>
<td>25 m</td>
<td>Plüss, 1997</td>
</tr>
</tbody>
</table>
referred to as global radiation), α is albedo, L_s^\perp is longwave sky radiation, L_t^\perp is longwave radiation from the surrounding terrain and L_{\uparrow} is the emitted longwave radiation. Measurements of net radiation on glaciers are seldom available, and it is therefore necessary to parameterize the individual components.

2 Global radiation

Upon entering the atmosphere, solar radiation is partitioned into direct and diffuse components. This is mainly due to scattering by air molecules, scattering and absorption by liquid and solid particles and selective absorption by water vapour and ozone, all processes having different wavelength dependencies. Besides atmospheric conditions and clouds, site-specific characteristics such as slope angle and aspect are also crucial for the computation of shortwave radiation in complex topography. Potential clear-sky direct solar radiation on an inclined surface I_c can be expressed by (e.g., Iqbal, 1983):

$$I_c = I_0 \left(\frac{R_m}{R} \right)^2 \Psi_\text{a} P_\text{z} \cos \theta$$ \hspace{1cm} (4)

where I_0 is the solar constant ($\sim 1368 \text{ W m}^{-2}$), R is the sun-Earth distance (with subscript m referring to the mean), Ψ_a is the atmospheric clear-sky transmissivity, P is atmospheric pressure, P_z is mean atmospheric pressure at sea level, Z is the local zenith angle and θ is the angle of incidence between the slope-normal and the solar beam. A widely used solution for the incidence angle is given by Garnier and Ohmura (1968):

$$\cos \theta = \cos \beta \cos Z + \sin \beta \sin Z \cos(\varphi_\text{sun} - \varphi_\text{slope})$$ \hspace{1cm} (5)

where β is the slope angle, Z is the zenith angle and φ_sun and φ_slope are the solar azimuth and the slope azimuth angles, respectively. The zenith angle can be approximated as a function of latitude, solar declination and hour angle (e.g., Iqbal, 1983). Atmospheric attenuation of shortwave radiation can be described by Bouguer’s law (also called Lambert’s or Beer’s law) and is proportional to the atmospheric pathlength and the initial radiation flux. In atmospheric models, this process is often parameterized by using different transmission coefficients for the most attenuative molecules and aerosols (e.g., Dozier, 1980). Transmissivities tend to be highest in winter and lowest in summer and tend to increase with latitude due to the lower atmospheric water vapour and dust content both in winter and at high latitudes. Clear-sky transmissivities vary between 0.6 and 0.9 (Oke, 1987). The amount of diffuse radiation depends largely on atmospheric conditions. The fractions of diffuse radiation to global radiation ranged from 36 to 51% in spring and 24 to 41% in summer at eight stations between latitudes of 40° and 60° (Kondratyev, 1969). At the ETH camp in Greenland, 40% of global radiation was diffuse on average during the summer months (Konzelmann and Ohmura, 1995). On clear-sky days this portion ranged from 13 to 17%. Holmgren (1971) reported 16% of global radiation as diffuse on Devon Ice Cap and Ohmura (1981) found 15 to 21% on Axel Heiberg Island.

In complex topography diffuse radiation originates from two sources – the sky and the surrounding topography – and consists of three components:

1. radiation that is initially scattered out of the beam by molecules and aerosols (sky radiation);
2. backscattered radiation, or the global radiation that is reflected by the snow surface and subsequently redirected downward by scattering and reflection in the atmosphere;
3. radiation reflected from adjacent slopes.

Consequently, surrounding topography affects the amount of diffuse radiation in two opposing ways: sky radiation is reduced as part of the sky is obscured, while diffuse radiation is enhanced by reflection from adjacent slopes. The backscattered component
strongly depends on albedo and it is greatly increased by the presence of snow due to enhanced multiple reflections between the ground and the atmosphere.

Clear-sky diffuse radiation is significantly anisotropic (Kondratyev, 1969). The intensity is greatest in the direction of the sun and near the horizon because of the greater optical thickness of the atmosphere at large zenith angles. This effect is considered in the radiation model by Dozier (1980). However, most melt models assume isotropy. This simplification is acceptable in most applications because diffuse radiation is most anisotropic for clear skies, when diffuse radiation is relatively low, and is nearly isotropic under overcast conditions (Garnier and Ohmura, 1968), when diffuse radiation tends to be high.

Many theoretical and empirical formulae to calculate diffuse radiation have been proposed (e.g., List, 1966; Wesley and Lipschutz, 1976). Diffuse sky irradiance onto an inclined surface is given by (Kondratyev, 1965):

\[
D_s = \int_0^{2\pi} \int_{h(\phi)}^{\pi/2} D(h, \varphi) \cos \theta \cos h dh d\varphi
\]

where \(D(h, \varphi)\) is the radiance from the direction determined by the angular height \(h\) relative to the horizontal plane and the azimuth angle \(\varphi\), \(h(\varphi)\) is the lowest angular height of the point in the sky unobstructed by topography in the azimuth \(\varphi\) and \(\theta\) is the angle between the vector normal to the slope and an arbitrary direction. Most melt models refrain from integrating diffuse radiation over azimuth and zenith angles, and prefer a simpler so-called view-factor relationship to account for the effects of topography. The view-factor \(V_f\) is related to the fraction of the hemisphere unobstructed by surrounding slopes and can be approximated by:

\[
V_f = \cos^2(H)
\]

where \(H\) is the average horizon angle (Marks and Dozier, 1992). A widely used simplification is given by Kondratyev (1969) and applied, for example, by Arnold et al. (1996):

\[
V_f = \cos^2(\beta/2)
\]

with \(\beta\) the slope of the surface. Strictly speaking, this approximation only refers to a sloping surface without surrounding obstructions. Funk (1985) has shown that on Rhonegletscher results differed by roughly \(\pm 10\%\) from those obtained by numerical integration of the horizon angle. Diffuse radiation on the inclined surface including the effects of topography can be approximated by

\[
D = D_0 V_f + \alpha_m (1 - V_f)
\]

where \(D_0\) is diffuse sky radiation of an unobstructed sky, \(G\) is global radiation and \(\alpha_m\) is the mean albedo of the surroundings. The first term refers to sky radiation, the second term to terrain radiation.

For point calculations, a large variety of empirical functions have been developed to relate global radiation to climatic and topographic variables without explicitly differentiating between direct and diffuse radiation. Based on measurements in the Alps, Sauberer (1955) proposed a parameterization for global radiation. Wagner (1980a) presents scattergrams for daily sums of global radiation in the Alps depending on the month and assuming mean daily cloudiness. Kasten (1983) computed global radiation as a function of top of atmosphere radiation, optical air mass and turbidity, deriving the latter two from zenith angle, elevation, air temperature and humidity. Based on Kasten (1983), Konzelmann et al. (1994) derived a parameterization for global radiation using air temperature, vapour pressure, albedo, cloud amount and elevation at the ETH camp on West Greenland.

On a larger scale, numerous distributed radiation models have been developed to compute global radiation for each grid element of an elevation model. Munro and Young (1982) and Varley and Beven (1996) proposed global radiation models for steep terrain treating direct and diffuse radiation separately. Dozier (1980) developed a highly sophisticated spectral model for clear-sky solar radiation, incorporating separate transmission functions for various absorption
and scattering processes as a function of wavelength and explicitly accounting for the interactions with the snow surface and surrounding terrain. Models of this type are complicated and require estimates of various atmospheric attenuation parameters and of the ozone and water vapour distribution with altitude as input, which are often unknown.

In some distributed melt models, this problem is circumvented by including measured global radiation into model formulations, thus scaling calculations to measurements (e.g., Arnold et al., 1996). Spatial variations due to topographic effects are considerably more pronounced for the direct than the diffuse component. Hence, in distributed modelling measured global radiation needs to be split into direct and diffuse components prior to extrapolation. Hock and Holmgren (2005) accomplished this by adapting an empirical relationship between the ratio of diffuse radiation to global radiation and the ratio of global radiation to top of atmosphere radiation as suggested by Collares-Pereira and Rabl (1979). Following Ohta (1994) direct solar radiation thus obtained is divided by potential clear-sky direct radiation at the weather station \(I_{cs} \) was then used to compute direct radiation for each grid cell \(I \):

\[
I = \frac{{I_{cs}}}{{I_c}} \quad (10)
\]

where \(I_{cs} \) is potential clear-sky direct radiation for the grid cell to be calculated (see equation 4). The ratio \(I_c/I_{cs} \) which is assumed constant in space accounts for the deviations from clear-sky conditions and tends to decrease with increasing cloudiness. Escher-Vetter (2000) and Hock and Noetzli (1997) extrapolated global radiation without explicit separation into the direct and diffuse components by multiplying the ratio of measured global radiation to \(I_{cs} \) by \(I_c \) to obtain global radiation for each grid cell. Both methods can only be applied if the grid cell to be computed and the measuring site are not topographically shaded.

3 Albedo

Warren (1982) gives a comprehensive review of snow albedo. Albedo, generally defined as the averaged reflectivity over the spectrum from 0.35 to 2.8 \(\mu \text{m} \), varies considerably on glaciers, both in space and time. Ranging from 0.1 for dirty ice to more than 0.9 for fresh snow it controls the spatial and temporal distribution of meltwater production to a large extent, thus rendering albedo a key parameter in glacier melt simulations. Summer snowfall events can reduce melt and runoff considerably because of abruptly enhanced albedo. Snow albedo displays considerable short-term fluctuations. Fresh-snow albedo may drop by 0.3 within a few days due to metamorphism. Temporal variations of ice albedo are small compared to those of snow (Cutler and Munro, 1996; Brock et al., 2000a; Jonsell et al., 2003). However, small-scale spatial albedo variations may occur on glacier ice and cause large spatial differences in ablation (van de Wal et al., 1992; Konzelmann and Braithwaite, 1995). Glacier albedo often is considerably modified by deposits of sediment or rock debris.

Albedo is determined by factors related to the surface itself, such as grain size, water content, impurity content, surface roughness, crystal orientation and structure, and by factors related to the incident shortwave radiation, such as the wavelength or whether the sunlight is diffuse or direct. Water in interstices between grains indirectly affects albedo by increasing grain size which in turn reduces albedo. Surface albedo increases with increasing cloudiness and atmospheric water content. Clouds preferentially absorb near-infrared radiation, thus increasing the fraction of visible light, for which albedo is higher (Marshall and Warren, 1987). This effect is enhanced by multiple reflection between the cloud base and the glacier surface. Snow albedos have been found to increase by 3–15% when moving from clear-sky to overcast conditions (Holmgren, 1971; Greuell and Oerlemans, 1987). Jonsell et al. (2003) report short-term albedo variations over snow by
>0.1 due to cloud fluctuations while the response of albedo over ice to varying cloudiness was considerably smaller. Albedo is highest at low angles of incidence as a result of the Mie scattering properties of ice and snow grains dominating other effects such as the spectral change in global radiation.

Modelling albedo is complicated, as it is exceedingly difficult to quantitatively relate albedo variations to their causes. Opposing factors may influence the local conditions in different ways. On glaciers, snow and ice albedo must be treated separately due to their substantial difference and different temporal variability. Radiative transfer modelling studies indicate that snow albedo is primarily explained by the snow grain size. Models accounting for the effects of grain size as well as atmospheric controls have been proposed by Warren and Wiscombe (1980), Choudhury and Chang (1981), Marshall and Warren (1987) and Marks and Dozier (1992). However, due to large data requirements, they are generally not applicable for operational purposes and surrogate methods are used instead. A common surrogate method is the so-called aging curve approach, which calculates the decreasing snow albedo as a function of time after the last significant snowfall. The formulation of the Corps of Engineers (1956) has been widely used:

\[\alpha = \alpha_0 + be^{-n/k} \]

where \(\alpha_0 \) is the minimum snow albedo, \(n \) the number of days since the last significant snowfall and \(b \) and \(k \) are coefficients. Kuzmin (1961) presented nomogramms for the decay of snow albedo for different snow depths. A large variety of snow albedo parameterizations have been proposed incorporating one or more variables such as snow depth, snow density, melt rate, sun altitude, air temperature and accumulated daily maximum air temperatures since the last snowfall (e.g., Brock et al., 2000a; Willis et al., 2002 – see summary in Brock et al., 2000a). Although these generally generate satisfactory albedo simulations for the site developed and calibrated, they need further independent testing to promote confidence in their general applicability.

In contrast to snow albedo, very few studies have focused on ice albedo (e.g., Cutler and Munro, 1996; Brock et al., 2000a). Ice albedo is often treated as a temporal and spatial constant (Konzelmann and Braithwaite, 1995; Hock and Noetzli, 1997), albedo jumping from a fixed or variable snow value to a lower fixed ice value as soon as all snow has melted. Oerlemans (1992) proposed an energy-balance model including modelling of glacier albedo. His albedo parameterization is based on the assumption of a downglacier decrease in albedo owing to an increase in concentrations of dust and debris. He defines a ‘background albedo profile’ as a function of the elevation relative to the equilibrium line at the end of the ablation season and various empirically determined constants. Snow albedo is superimposed on this profile as a function of snow depth. Arnold et al. (1996) slightly modified this approach by considering fresh snow separately.

4 Longwave radiation
Longwave incoming radiation is emitted mostly by atmospheric water vapour, carbon dioxide and ozone. Variations are largely due to variations in cloudiness and in the amount and temperature of the water vapour. Due to the latter, longwave irradiance tends to decrease with altitude. Although downward radiation is emitted from all levels of the atmosphere, the largest portion reaching the surface originates from the lowest layers. Irradiance can be modelled using radiative transfer equations, requiring input of temperature and water vapour profiles and the distribution of the concentrations of CO\(_2\) and O\(_3\). A review of models is given by Ellingston et al. (1991). In melt models, longwave irradiance is usually estimated from empirical relationships based on standard meteorological measurements exploiting the fact that longwave irradiance correlates well with air temperature and vapour pressure at screen level, usually at 2 m above the surface.
(Kondratyev, 1969). Over melting snow and ice surfaces, however, the use of screen-level temperature may underestimate longwave irradiance due to the proximity of the melting surface which restricts temperature increase of the lowest air layers (van den Broeke, 1996). Generally, the equations for longwave irradiance \(L \downarrow \) take the form:

\[
L \downarrow = \varepsilon_c \sigma T_a^4 F(n)
\]

where \(\varepsilon_c \) is the full-spectrum clear-sky emissivity, \(\sigma \) is the Stefan-Boltzmann constant \((5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}) \), \(T_a \) is air temperature \([\text{K}] \) and \(F(n) \) is a cloud factor describing the increase in radiation due to clouds as a function of cloud amount \(n \).

Effective or apparent emissivity \(\varepsilon_e \) defined by the product of \(\varepsilon_c \) and \(F(n) \) ranges from approximately 0.7 under clear-sky conditions to close to unity under overcast conditions. A variety of parameterizations have been suggested to relate clear-sky emissivity to screen-level measurements of air temperature and humidity. Widely quoted expressions are those of Ångström (1916):

\[
\varepsilon_c = A - B \cdot 10^{-Cp}
\]

and Brunt (1932):

\[
\varepsilon_c = a + b \sqrt{e_a}
\]

where \(A, B, C \), \(a = 0.51 \) and \(b = 0.066 \) are empirically determined coefficients, \(p \) is absolute humidity and \(e_a \) is vapour pressure \([\text{hPa}]\). The coefficients obtained by different authors are very variable, as is to be expected since they vary with the time of year and location. These equations do not work on subdaily timescales. Wagner (1980b) found good results on Hintereisferner using Brunt’s and Ångström’s formulae, although Brunt’s formula tended to yield 7–8% lower values than Ångström’s expression. A more physically based approach has been developed by Brutsaert (1975) with the advantage that it does not require calibration to local conditions. It is based on the integration of the Schwarzschild’s transfer equations for simple atmospheric profiles of temperature \([\text{K}]\) and vapour pressure \([\text{hPa}]\), but neglects greenhouse gases other than water vapour:

\[
\varepsilon_e = 1.24 \left(\frac{e_a}{T_a} \right)^{1/7}
\]

Over glaciers, Braithwaite and Olesen (1990b) and Arnold et al. (1996) applied the expression for effective emissivity \(\varepsilon_e \) suggested by Ohmura (1981), which includes the effect of clouds:

\[
\varepsilon_e = 8.733 \times 10^{-3} T_a^{0.788} (1 + kn)
\]

where \(T_a \) is air temperature \([\text{K}]\), thus accounting for the increase in absolute humidity with temperature, and \(n \) is the cloud amount. The coefficient \(k \) is a function of cloud type, for which Ohmura (1981) listed eight values corresponding to different cloud types. Konzelmann et al. (1994) derived parameterizations for hourly and daily longwave irradiance at the ETH camp in Greenland. The hourly formulation for effective emissivity is:

\[
\varepsilon_e = \varepsilon_c (1 - n^p) + \varepsilon_{oc} n^p
\]

Clear-sky emissivity \(\varepsilon_c \) as obtained from measured longwave radiation under clear-sky conditions \((\varepsilon_c = L \downarrow /\sigma T_a^4) \) was related to measured \(e/T \) to fit a modified version of Brutsaert’s (1975) equation, yielding \(\varepsilon_c = 0.23 + 0.484 (e_a/T_a)^{1/8} \) with \(e_a \) in \(\text{Pa} \). By considering greenhouse gases other than water vapour \((\varepsilon_c \text{ is different from zero (0.23) in a completely dry atmosphere}) \), this formulation was superior to the original one by Brutsaert (1975). The emissivity of a completely overcast sky \(\varepsilon_{oc} = 0.952 \) and the coefficient \(p = 4 \) were obtained empirically from observations of \(L \downarrow, T_a, e_a \) and cloud amount. Although the high power \((p = 4) \) resulted from the site-specific cloud climatology, where high cloudiness was primarily caused by low clouds and low cloudiness by high clouds, the expression has been used at other sites in Greenland (e.g., Greuell and Konzelmann, 1994; Zuo and Oerlemans, 1996) and in the Alps (Plüss, 1997). Coefficients were adjusted to the conditions on Pasterze glaciers by Greuell et al. (1997)
Glacier melt: a review of processes and their modelling

and used on Moteratsch glacier by Oerlemans (2000). At a low-elevation site in Greenland, van den Broeke (1996) obtained considerable underestimation of longwave irradiance using equation 17. The same was true when the formula derived in polar regions by Koenig-Langlo and Augstein (1994) was applied. Van den Broeke (1996) attributes the underestimation to a stronger surface inversion than at the Greenland ETH camp for which the coefficients were determined. In general, satisfactory results can be achieved with such parameterization, however, it is necessary to adjust coefficients for different sites.

In mountainous areas, surrounding topography can cause significant spatial variations in longwave irradiance. This is neglected in many distributed energy-balance models, which assume longwave irradiance is spatially uniform. Longwave sky irradiance is reduced by obstructed sky due to surrounding terrain. Conversely, the surface receives additional radiation from the surrounding terrain and the air between the terrain and the receiving surface. The importance of terrain contributions to the incoming longwave radiation has been pointed out by Olyphant (1986). Plüss and Ohmura (1997) found variations between 160 and 240 W m\(^{-2}\) in longwave incoming radiation \(L_{\downarrow}\) on a clear day in a high alpine area, solely due to topographic influence. Marks and Dozier (1979) considered topographic modification of longwave irradiance by:

\[
L_{\downarrow} = (\varepsilon_s \sigma T_s^4) V_f + (\varepsilon_s \sigma T_s^4)(1 - V_f) \tag{18}
\]

where \(\varepsilon_s\) and \(\varepsilon_s\) are emissivities of the air and the surrounding surface, respectively, \(T_s\) and \(T_s\) are the temperature of the air and the surface, respectively, and \(V_f\) is the thermal view factor, related to the unobscured fraction of the hemisphere (see equations 7 and 8). The first term represents sky irradiance and the second term refers to terrain irradiance. The effect of the air between the emitting surface and the receiving surface was neglected. Based on calculations with a spectral radiation transfer model (LOWTRAN7), Plüss and Ohmura (1997) revealed that neglecting this effect may lead to significant underestimation of irradiance, especially if the air temperature exceeds the snow surface temperature, which is typical of melting surfaces. They derive a simple parameterization for longwave irradiance in completely snow-covered mountainous terrain accounting for this effect. Despite the large anisotropy in longwave irradiance under clear-sky conditions (Kondratyev, 1969), Plüss and Ohmura (1997) showed that the assumption of isotropy produced only small errors in all investigated cases. Under cloudy conditions, longwave irradiance is nearly isotropic.

Longwave outgoing radiation \(L_{\uparrow}\), referring to the radiation emitted by and reflected from the surface, can be calculated from:

\[
L_{\uparrow} = \varepsilon_s \sigma T_s^4 + (1 - \varepsilon_s) L_{\downarrow} \tag{19}
\]

with \(\varepsilon_s\) the emissivity of the snow cover. In many computations the snow and ice surfaces are assumed to be at melting point. Combined with an assumed emissivity of unity, the corresponding longwave emission amounts to 315.6 W m\(^{-2}\).

5 Turbulent heat fluxes

The turbulent fluxes of sensible and latent heat are driven by the temperature and moisture gradients between the air and the surface and by turbulence in the lower atmosphere as the mechanism of vertical air exchange. These fluxes are generally small when averaged over periods of weeks or months and compared to the net radiation flux (Table 2; Willis et al., 2002), but they can exceed the radiation fluxes over short time intervals of hours and days, and in mid-latitude maritime environments also over longer periods (e.g., Hogg et al., 1982; Marcus et al., 1984). Highest melt rates often coincide with high values of the turbulent fluxes (Hay and Fitzharris, 1988). The latent heat flux is of major importance for the short-term variations of melt rates on temperate glaciers (Lang, 1981). Sublimation is
important at high altitudes and high latitudes, such as the blue-ice areas of the Antarctic ice sheet where all ablation occurs by sublimation (Bintanja, 1999). A review of turbulent heat transfer over snow and ice is given by Morris (1989).

The turbulent heat fluxes can be measured directly by eddy-correlation techniques. These require sophisticated instrumentation with continuous maintenance, which render them unsuitable for operational purposes. Consequently, such studies are rare and restricted to short periods of time (e.g., Munro, 1989; Forrer and Rotach, 1997; van der Avoird and Duynkerke, 1999). Therefore, the turbulent heat fluxes are often described by gradient-flux relations. These are based on the theoretical work of Prandtl (1934) and Lettau (1939) and they were first introduced to snow and ice by Sverdrup (1936). In the surface layer, the relations are based on the assumption of constant fluxes with height and horizontal, homogeneous conditions. Accordingly, the turbulent energy fluxes of sensible heat \(Q_H \) and of latent heat \(Q_E \) are proportional to the time-averaged gradients of potential temperature \(\bar{\theta} \) and specific humidity \(\bar{q} \) in the surface boundary layer and can be expressed by:

\[
Q_H = \rho_a c_p K_H \frac{\partial \bar{\theta}}{\partial z} \quad (20)
\]
\[
Q_E = \rho_a L_v K_E \frac{\partial \bar{q}}{\partial z} \quad (21)
\]

where \(\rho_a \) is the air density, \(c_p \) is the specific heat capacity of air, \(L_v \) is the latent heat of evaporation, \(z \) is the height above the surface, \(K_H \) and \(K_E \) are the eddy diffusivities for heat and vapour exchange, respectively. \(K_H \) and \(K_L \) specify the effectiveness of the transfer process and depend on wind speed, surface roughness and atmospheric stability.

The profile method involves measurements of \(\bar{\theta}, \bar{q} \) and wind speed \(\bar{u} \) at preferably more than two levels within the first few metres above the surface (e.g., de la Casinière, 1974; Forrer and Rotach, 1997).

The method has the disadvantage of large sensitivity to instrumental errors, especially if only two levels of measurements are employed. Because detailed profile measurements are seldom available, the so-called bulk aerodynamic method has frequently been applied for practical purposes (e.g., Braithwaite et al., 1998; Oerlemans, 2000). It exploits the fact that the surface conditions of a melting surface are well defined \((T = 0^\circ C, e = 6.11 \text{ hPa})\), thus allowing for the computation of the sensible \(Q_H \) and the latent heat flux \(Q_E \) from only one level of measurements. Integrating equations 20 and 21, the bulk aerodynamic expressions read:

\[
Q_H = \rho_a c_p C_H \frac{\bar{\theta}_z - \bar{\theta}_s}{z_L} \quad (22)
\]
\[
Q_E = \rho_a L_v C_E \frac{\bar{q}_z - \bar{q}_s}{z_L} \quad (23)
\]

where \(\bar{u} \) is mean wind speed, \(\bar{\theta}_z \) and \(\bar{\theta}_s \) are mean potential temperatures and \(\bar{q}_z \) and \(\bar{q}_s \) are mean specific humidities at height \(z \) and the surface, respectively. In practice, the specific humidity term \((\bar{q}_z - \bar{q}_s)\) is often replaced by \((0.622/p)(\bar{e}_z - \bar{e}_0)\) with \(p \) the atmospheric pressure and \(\bar{e} \) the mean vapour pressure.

The exchange coefficients for heat \(C_H \) and vapour \(C_E \) are given by:

\[
C_H = \frac{k^2}{[\ln(z/z_0) - \psi_M(z/L)] [\ln(z/z_0T)] - \psi_M(z/L)} \quad (24)
\]
\[
C_E = \frac{k^2}{[\ln(z/z_0) - \psi_M(z/L)] [\ln(z/z_{0E})] - \psi_M(z/L)} \quad (25)
\]

where \(k = 0.4 \) is the von Kármán constant, \(\psi \) is the integrated form of the Monin-Obukhov stability functions \(\phi \) as an atmospheric stability correction, the subscripts \(M, H \) and \(L \) refering to momentum, heat and water vapour, respectively. Under neutral conditions the functions \(\psi \) assume a value of zero. The roughness length for wind \(z_0 \), defined as the height above the surface where \(\bar{u} = 0 \), is related in a complex way to the roughness of
the surface. The roughness lengths for temperature \(z_{0T} \) and vapour pressure \(z_{0e} \) are scaling parameters lacking a well-defined physical meaning. The stability functions \(\Psi \) depend on the stability parameter \(z/L \), where \(L \) denotes the Monin-Obukhov-length, which in the stable boundary layer can be interpreted as the height at which the rate of turbulent energy production by shear stress balances the energy consumption by buoyancy forces (Obukhov, 1946). The quantity \(z/L \), in turn, depends on \(Q_H \) among other factors, thus an iterative loop is required to compute the turbulent fluxes (e.g., Munro, 1989). The exchange coefficient is often also referred to as the transfer or drag coefficient. However, direct comparison of numerical values between studies is often difficult because the number and type of parameters and coefficients lumped into these numerical values vary among authors. For example, Moore (1983) and Price and Dunne (1976) lump the wind speed into the exchange coefficient expressions (equations 24 and 25).

A variety of empirical expressions have been proposed to define the form of the stability functions (Högström, 1988). A frequently used approximation is \(\alpha z/L \) where \(\alpha = 5 \) for stable stratification (Dyer, 1974). Forrer and Rotach (1997) showed that for large stability \((z/L > 0.4) \) the linear form of the stability functions was not appropriate at a site on the Greenland ice sheet, but the nonlinear expressions suggested by Beljaars and Holtslag (1991) yielded better results. Due to its simplicity, a commonly used stability criterion is the Richardson number, which in its bulk form is defined by:

\[
R_b = \frac{g}{T_z} \frac{(T_z - T_e)(z - z_0)}{u_z^2} \tag{26}
\]

where \(g \) is the acceleration of gravity and \(T_z \) and \(T_e \) are absolute temperatures at height \(z \) and the surface, respectively. For stable stratification \((R_b > 0) \), which prevails over melting glaciers, one way to relate the Richardson number to the stability function is given by Webb (1970) where the exchange coefficient \(C \) for the property \(x \) to be transported reads:

\[
C_x = \frac{k^2}{\ln(z/z_0) \ln(z/z_0x)} (1 - 5.2R_b)^2 \tag{27}
\]

The magnitude of correction either by the Monin-Obukhov stability or by the Richardson number increases considerably as the wind speed decreases.

Although the bulk aerodynamic approach is very convenient due to its simplicity, much uncertainty about its application to glacier surfaces remains. One problem concerns the specification of roughness lengths. They can be derived from detailed measurements of wind, temperature and humidity profiles. However, these are seldom available and the roughness lengths are often estimated from published data (e.g., Greuell and Oerlemans, 1989; Konzelmann and Braithwaite, 1995). This poses a problem because the roughness lengths for wind reported over snow and ice vary by several orders of magnitude (summaries in Moore, 1983; Braithwaite, 1995a) ranging from 0.004 mm (Inoue, 1989) to 70 mm (Jackson and Carroll, 1978) over snow and from 0.003 mm (Antarctic blue ice area; Bintanja and van den Broeke, 1995) to 120 mm (van den Broeke, 1996) over glacier ice. Generally, \(z_0 \)-values of a few mm tend to be assumed in glacier applications. Changes in \(z_0 \) and \(z_{0T} \) by one order of magnitude can result in differences in the turbulent heat fluxes by a factor of two (Munro, 1989; Hock and Holmgren, 1996) demonstrating the significance of accurate roughness length determination.

The relationship between the roughness lengths of wind, heat and vapour pressure is another matter of discussion. The principle of similarity is often invoked (e.g., Streten and Wendler, 1968; Hay and Fitzharris, 1988; Brun et al., 1989; Munro, 1989; Zuo and Oerlemans, 1996), although there is evidence that the surface roughnesses for heat and vapour pressure are smaller than \(z_0 \) by one or
two orders of magnitude (Sverdrup, 1935; Holmgren, 1971; Ambach, 1986; Beljaars and Holtslag, 1991; Smeets et al., 1998). Conversely, Morris et al. (1994) concluded the opposite from energy-balance modelling, namely that \(z_{0T} \) and \(z_{0E} \) were considerably larger than the aerodynamic roughness lengths. Data analysis from Greenland gave values for \(z_T \) of about 10 to 100 times larger than \(z_0 \) (Calanca, 2001). Braithwaite (1995a) suggests that the assumption of unequal roughness lengths is not strictly necessary, because an ‘effective roughness length’ satisfying \(z_0 = z_{0T} = z_{0E} \) can be chosen so that the exchange coefficient gives the same value when applying equations 24 and 25. The roughness length of vapour pressure is generally assumed to be equal to the one for heat. However, very few studies, exist due to the inherent difficulty of accurately measuring vapour pressure profiles over glaciers. In addition, roughness lengths will vary in space and time (Plüss and Mazzoni, 1994; Greuell and Konzelmann, 1994; Calanca, 2001). Holmgren (1971) observed an increase in roughness lengths with decreasing wind speed; Anderson (1976) a decrease with time during the snow melt season.

Alternative approaches to estimating roughness lengths have been suggested by Lettau (1969) who calculated them from the height and cross-sectional area of surface forms, and by Andreas (1987) who used surface renewal theories and expressed \(z_{0T}/z_0 \) and \(z_{0E}/z_0 \) as functions of the roughness Reynolds number. In a study on Greenland, van den Broeke (1996) obtained \(z_0 = 0.8 \) mm from wind profiles, but at the same location \(z_0 = 120 \) mm from the microtopographical survey according to Lettau (1969), clearly showing the difficulties involved in obtaining accurate estimates of roughness lengths. The latter value yielded more realistic results for the energy balance. Herzfeld et al., (2000) designed a sensor recording variations in microtopography at \(0.2 \) m \(\times \) \(0.1 \) m resolution when pulled across the ice surface. The data are analysed using geostatistical methods.

More studies are needed to evaluate the method in terms of suitability for use in turbulent flux calculations. Because of the difficulties involved in specifying transfer coefficients or roughness lengths, some authors treat them as residuals in the energy-balance equation (e.g., La Chapelle, 1961; Braithwaite et al., 1998; Zuo and Oerlemans, 1996; Oerlemans, 2000). Sufficient accuracy can only be obtained over longer periods of time. A unique attempt to incorporate spatial and temporal variations in \(z_0 \) into a distributed energy-balance model has been made by on Haut Glacier d’Arolla (Brock et al., 2000b). Over snow, \(z_0 \) was parameterized as a function of accumulated daily maximum temperatures since the last snowfall, to account for increasing snow roughness during snowmelt. However, no relationship could explain the observed variation over ice, when relating \(z_0 \) derived from the formula of Lettau (1969) to various meteorological variables. The parameterization over snow needs further testing at other sites.

Many energy-balance models applied to snow and ice do not include a formal stability correction in the bulk approach (e.g., Föhn, 1973; Hogg et al., 1982; Konzelmann and Braithwaite, 1995; Oerlemans, 2000), thus assuming logarithmic wind profiles despite prevailing stable stratification. Braithwaite (1995a) points out that the uncertainty in surface roughness may cause larger errors than neglecting stability. Some authors identify a tendency of energy-balance modelling to underestimate glacier melt and attribute this error to an underestimation of the turbulent fluxes (e.g., Harding et al., 1989; Konzelmann and Braithwaite, 1995; van den Broeke, 1996). Brun et al. (1989) concluded that, under light wind conditions, energy gain at the surface by heat conduction through the air and by vapour diffusion due to vapour gradients in the air may be higher than by turbulent transfer. In order to obtain larger fluxes, they modified equations 22 and 23 in their snow model by replacing the wind speed \(u \) by the empirical relation \(a + b \cdot u \), where
\(a\) and \(b\) are experimentally determined. King and Anderson (1994) and Martin and Lejeune (1998) showed that turbulent heat fluxes are sensitive to orography and concluded that exchange coefficients in complex topography must be increased. Martin and Lejeune (1998) proposed an empirical parameterization which reduces the Richardson number under stable atmospheric conditions, thus allowing for turbulent heat transfer even with strong stability. However, they emphasize that parameterization of the turbulent fluxes is highly dependent on the site, and that a universal or simple formula can not be determined. De la Casinière (1974) and Halberstam and Schieldge (1981) observed temperature profile anomalies that would lead to serious errors in an estimate of the turbulent heat fluxes if the data at standard height (2 m) were used. Due to radiative heating of the air above the surface, the temperature maxima occurred within the first couple of decimetres above the surface, thus violating the assumption of constant fluxes with height. Munro and Davies (1972) gave an upper limit of 1 m for the surface boundary layer thickness. Contrary to theory, Grainger and Lister (1966) showed that the logarithmic wind profile is valid over a wide range of stability, and on Greenland, Forrer and Rotach (1997) found no tendency for the stability function for heat to increase with increasing atmospheric stability, although they lack an explanation in terms of boundary layer theory.

Experimental and theoretical evidence is mounting that Monin-Obukhov theory, on which both profile and bulk methods are based, is not applicable over a sloping glacier surface due to violation of assumptions such as homogeneous, infinite, flat terrain and constant flux with height (Holmgren, 1971; Denby and Greuell, 2000). The turbulent scaling laws used in the theory are altered by the wind-speed maximum. By observations and second-order modelling, Denby and Greuell (2000) showed that profile methods will severely underestimate turbulent fluxes when a wind-speed maximum is present, but found that the bulk method was appropriate at least in the region below the wind-speed maximum despite large scatter in the data.

The discussion above reveals that large uncertainty remains in the determination of turbulent fluxes over glaciers, in terms of the suitability of bulk and profile methods, the determination of exchange coefficients or roughness lengths and their spatial and temporal variability, and the application of stability corrections. Further research is needed to explore and develop alternative new methods that are more suitable over sloping glacier surfaces subject to glacier winds. More eddy correlation measurements are needed on valley glaciers. In glaciology such studies have been conducted over ice sheets, while to date only one reported study concerns a valley glacier (Smeets et al., 1998).

6 Ice heat flux

Before surface melting can occur, the temperature of the ice/snow surface must be raised to 0°C. The energy necessary to heat a cold snow or ice mass to 0°C defines the cold content given by

\[
C = -\int_0^Z \rho(z)c_p T(z)dz
\]

where \(\rho\) is the snow or ice density, \(c_p\) is the specific heat of snow or ice, \(T\) is the temperature at depth \(z\) (°C) and \(Z\) is the maximum depth of subfreezing temperatures. The cold content of both winter snow cover and the surface ice layers can be an important retention component, significantly contributing to the delay between surface melt and melt-derived streamflow (e.g., Kattelmann and Yang-Daqing, 1992). Closely connected to the cold content is the formation of superimposed ice (König et al., 2002) and internal accumulation (Trabant and Mayo, 1985; Schneider and Jansson, 2004). The former forms when water percolating through the snow layer refreezes at the impermeable cold ice surface, while the latter refers to water refreezing in the firn area, below the last summer surface. These processes can be
crucial for glacier mass balance, especially in polar regions, and for correct calculations of equilibrium line altitude. The energy balance is also affected, as the albedo and surface roughness are modified.

a Ice: Near-surface glacier ice is warmed up primarily by heat conduction and by absorption of penetrating shortwave-radiation. For temperate glacier ice, the heat flux is zero except during occasional nocturnal freezing. For cold glacier ice or glaciers with a perennial cold surface layer, heat flux into the ice can be a substantial energy sink. At a site in North Greenland, 11% of the total energy surplus at the surface was used to heat up the ice, and thus was not available for melt (Konzelmann and Braithwaite, 1995). Heat flux across the ice surface is given by:

\[Q_c = \int_0^z \rho c_p \frac{dT}{dt} \, dz \]

(29)

with \(\frac{dT}{dt} \) the rate of change of ice temperature. This flux can be estimated from temperature-depth profiles down to the base of the seasonally affected layer, usually 10–15 m below the surface (Paterson, 1994). The heat flux is then computed from the change in cold content with time. Konzelmann and Braithwaite (1995) propose a method to compute the ice heat flux when temperature measurements are shallower than the depth of seasonal temperature fluctuations; however, the temperature changes with time are assumed constant. Then the heat flux through the glacier surface is calculated as the intercept in a regression equation of the heat flux at depth \(z \) versus depth, where the englacial heat flux is calculated from ice temperature gradients and thermal conductivity. Greuell and Oerlemans (1987) model the temperature profile inside the glacier down to a depth of ~25 m, considering conduction and advection of snow/ice normal to the surface and energy release or consumption by phase changes. Results showed that ablation is considerably overestimated at higher elevations if glacier temperatures were kept at 0°C, thus emphasizing the need to consider the occurrence of subfreezing glacier temperatures in models.

b Snow: Quantitative assessment of the energy transfer within a cold snowpack is more difficult due to a complex interplay of hydrology and heat transfer (Colbeck, 1972). The mechanisms of heat transfer in snow are governed by penetration of shortwave radiation, internal movement of water/water vapour and phase changes. The most efficient process for snowpack warming is the release of latent heat by refreezing of percolating melt or rain water. Physical-based snow models accounting explicitly for heat and mass transfer within a snow cover, including simulation of the evolution of temperature, density, water content, metamorphism and snow stratigraphy, have been suggested by several authors (e.g., Anderson, 1976); those few which have been converted into fully developed computer programs and widely tested include CROCUS (Brun et al., 1989), SNTHERM (Jordan, 1991) and DAISY (Bader and Weilenmann, 1992).

More conceptual approaches have been developed in order to circumvent excessive data requirements. Van de Wal and Russel (1994) developed an algorithm where energy deficits from previous time steps were compensated before allowing melt. This approach was extended by adjusting iteratively the surface temperature until the trial ablation for the time step becomes zero in case negative melt was computed (Escher-Vetter, 1985b; Braithwaite et al., 1998; Hock and Holmgren, 2005). An iterative procedure is necessary because surface temperature also affects outgoing longwave radiation, the turbulent heat fluxes and the heat flux supplied by rain. A common way to consider the cold content of snow in conceptual melt models is to use the concept of ‘negative melt’ (e.g., Braun and Aellen, 1990). The amount of refreezing water is computed from air temperature and a factor of refreezing in case computed melt turns negative.
7 Other heat fluxes
The sensible heat flux of rain is generally
unimportant in the overall surface energy bal-
ance of a glacier, and is thus neglected in
many models. A rainfall event of 10 mm at
10°C on a melting surface would produce a
heat flux of 2.4 W m⁻² averaged over a day,
hence negligible compared to other heat
fluxes. Precipitation may be a significant
short-term heat source only when precipita-
tion is heavy, prolonged and warm, as
countered in maritime areas exposed to
storms originating over warm oceans. One
day on Ivory Glacier, New Zealand, the heat
flux by rain contributed 37% of the daily abla-
tion of 6.2 mm (Hay and Fitzharris, 1988).
The heat flux by rain \(Q_R \) is given by:

\[
Q_R = \rho_w c_w R (T_r - T_s) \tag{30}
\]

where \(\rho_w \) is the density of water, \(c_w \) is the
specific heat of water (4.2 kJ kg⁻¹ K⁻¹), \(R \) is
the rainfall rate and \(T_r \) and \(T_s \) are the tem-
peratures of rain and the surface, respectively.
Although energetically of minor importance,
rain may affect melt indirectly by increasing
the liquid water content of a glacier surface
and thus reducing its albedo.

On alpine glaciers, advection of warm
air from adjacent valley slopes and moraines
may contribute substantially to glacier melt
(Wendler, 1975). This advective heat flux is
not considered in the vertical flux equation
used in the one-dimensional energy-balance
models generally applied in melt modelling.
For alpine tundra environments, modelling
studies have demonstrated that local advec-
tion of heat from snow-free patches consider-
ably enhances snow melt rates along the
leading edges of snow-covered patches
(Olyphant and Isard, 1988; Marsh and
Pomeroy, 1997; Essery, 1999).

Moore (1991) investigated the possibility of
sensible heat being advected by supraglacial
runoff. Through numerical modelling, he
concluded that such advection will be negligible
on a macroscale under most conditions, but
may cause microscale variations in ice melt.

III Temperature-index melt models
Temperature-index models or degree-day
models assume an empirical relationship
between melt and air temperature based on a
strong and frequently observed correlation
between these quantities. A detailed review
of the method and recent advances in distrib-
uted temperature-index modelling is given by
Hock (2003). Since air temperature is usually
the most readily available data quantity and is
reasonably easy to extrapolate and forecast,
temperature-index models have been the
most widely used method of ice and snow
melt computations. Applications are wide-
spread and include the prediction of melt
for operational flood forecasting and hydro-
logical modelling (WMO, 1986), glacier mass
balance modelling (e.g., Laumann and Reeh,
1993; Oerlemans et al., 1998) and assessment
of the response of snow and ice to pre-
dicted climate change (e.g., Braithwaite and
Zhang, 1999). Most operational runoff models,
(e.g., HBV model (Bergström, 1976),
SRM model (Martinec and Rango, 1986),
UBC model (Quick and Pipes, 1977),
HYMET model (Tangborn, 1984) and even
versions of the physically based SHE model
(Bøggild et al., 1999), apply temperature-
index methods for melt modelling.

Although the concept involves a simplifica-
tion of complex processes that are more
properly described by the surface energy
balance, temperature-index models often
match the performance of energy-balance
models on a catchment scale (WMO, 1986;
Rango and Martinec, 1995). The success of
the temperature-index method is generally
attributed to the high correlation of tem-
perature with various components of the
energy-balance equation. Longwave incom-
ing radiation and the turbulent heat fluxes
depend strongly on temperature, and tem-
perature in turn is affected by global radiation,
although not in a simple way (Kuhn, 1993;
Ohmura, 2001).

The classical degree-day model relates ice
or snow melt, \(M \) [mm], during a period of
\(n \) time intervals, \(\Delta t \), to the sum of positive

\[
M = \sum_{i=1}^{n} \Delta t \times T_i
\]
air temperatures of each time interval, T^+, during the same period:

$$\sum_{i=1}^{n} M = DDF \sum_{i=1}^{n} T^+ \cdot \Delta t \quad (31)$$

The factor of proportionality is the degree-day factor, DDF, expressed in mm d$^{-1}$ K$^{-1}$ for Δt expressed in days and temperature in °C (Braithwaite, 1995b; Hock, 2003).

Degree-day factors vary considerably in space and time because they implicitly account for all terms of the energy budget, which vary in relative importance. High relative contributions of sensible heat flux to the heat of melt favour low degree-day factors (Ambach, 1988). On average, reported values for different sites based on melt measurements range from 2.5 to 11.6 mm d$^{-1}$ K$^{-1}$ and 6.6 to 20.0 mm d$^{-1}$ K$^{-1}$ for snow and ice, respectively (see summary in Hock, 2003). Degree-day factors for ice generally exceed those for snow, due to lower albedo of ice compared to that of snow. In addition, enormous small-scale spatial variability occurs partially due to topographic effects. On Storglaciären (3 km2) hourly degree-day factors computed from melt determined from a distributed energy-balance model on a 30 m resolution grid ranged from 0 to 16 mm d$^{-1}$ K$^{-1}$ for the same hour of the day (Hock, 1999). Seasonal variations in the DDF can be expected due to the seasonal variation in clear-sky direct radiation, and in the case of snow, due to snow metamorphism, which generally decreases snow albedo, thus increasing the DDF, as the melt season progresses (Kuusisto, 1980). Measurements (Singh and Kumar, 1996) and modelling studies (Hock, 1999) indicate large diurnal variations in degree-day factors (0 to >15 mm d$^{-1}$ K$^{-1}$) caused by diurnal radiation fluctuations, implying that constant melt factors are inadequate for subdaily (e.g., hourly) melt computations.

Many temperature-index based runoff models consider seasonal variations in melt factors. For instance, the UBC runoff model (Quick and Pipes, 1977) uses a monthly variable melt factor, while the HBV-ETH model (Braun et al., 1993) determines the melt factor from sinusoidal interpolation between a minimum value on 21 December and a maximum value on 21 June. Schreider et al. (1997) and Arendt and Sharp (1999) varied the degree-day factor according to albedo.

Because degree-day factors are influenced by all components of the energy balance, many attempts have been made to strengthen the physical foundation of the method by incorporating more variables, such as wind speed, vapour pressure or radiation (e.g., Willis et al., 1993). There is a gradual transition from simple degree-day approaches to energy-balance type expressions by increasing the number of input variables in melt computations. The widely quoted combination method by Anderson (1973) applies a simple degree-day approach during dry periods and a simplified empirical energy-balance formulation during rainy periods. The UBC runoff model (Quick and Pipes, 1977) and the HYMET runoff model (Tangborn, 1984) include the daily temperature range in addition to air temperature itself as climatic input to their melt routines. Various studies have added a radiation term, often in form of shortwave or net radiation balance (Martinec, 1989; Kustas and Rango, 1994; Kane and Gieck, 1997), thus achieving better results on a daily or hourly basis compared to the classical degree-day method.

To account for spatial variability in melt rates, while employing spatially constant degree-day factors, melt-runoff models often divide the basin into elevation bands to consider a decrease in melt with increasing elevation, or also into aspect classes to account for enhanced melt on south-facing slopes compared to north-facing slopes (Braun et al., 1994). In recent years, such approaches have been considerably advanced by explicitly varying the degree-day factor for each slope/aspect class (Brubaker et al., 1996; Dunn and Colohan, 1999) or for each grid.
element of a digital elevation model in a fully distributed manner. Daly et al. (2000) increase the melt factor for each grid element as a function of an accumulated temperature index, while Cazorzi and Fontana (1996) and Hock (1999) incorporate clear-sky shortwave radiation to account for the spatial heterogeneity of radiation and melt conditions in complex terrain.

IV Discussion and concluding remarks

Due to the availability of air temperature data, temperature-index methods will probably remain the most widely used approach to compute melt for many purposes. These methods lump the surface energy exchange into one or a few parameters, with the disadvantage that melt factors vary from site to site, so model calibration is required. Conversely, energy-balance melt models more properly describe the physical processes at the glacier surface but require much more data, which are often not available.

There is a trend to replace simpler schemes with more sophisticated ones. However, a fundamental question concerns whether such an increase in sophistication is warranted. In Figure 2, hourly discharge simulations for Storglaciären, Sweden, based on different melt models are intercompared. Clearly, the classical degree-day model captures the seasonal pattern in discharge but not the daily discharge fluctuations (Figure 2a). Model performance is significantly enhanced by incorporating potential direct solar radiation as an index of local and daily variability in the energy available for melt (Figure 2b). Although this model assumes clear-sky conditions, a third approach including measured global radiation to incorporate cloud effects does not yield any improvement in performance (Figure 2c; Hock, 1999). This is probably due to increases in other energy fluxes under cloudy conditions, such as longwave irradiance. Both energy-balance approaches (Figure 2d and e) yield good results. The models differ in their levels of sophistication. Model (d) assumes a melting surface, constant snow albedo and spatially invariant longwave irradiance, while model (e) parameterizes these quantities, thus accounting for spatial variability (Hock, 1998). In general, model performance improved with increasing model complexity.

For runoff modelling using spatially lumped models and typical time steps of one day, modelling intercomparison projects (e.g., WMO, 1986) revealed that model complexity could not be related to the quality of the simulation results. Simple models provided comparable results to more sophisticated models, which is generally attributed to the difficulties of assigning proper model parameters and meteorological input data to each catchment element. The example in Figure 2 indicates that the appropriate level of model sophistication is related to the temporal and spatial scale of interest and the objectives of the study. For catchment-scale studies employing daily time steps, simple temperature-index methods are often sufficient. However, if higher resolution in space and time is required, more sophisticated energy-balance models are preferable. Physically based models are more suited to quantifying the response of melt and discharge to future climate changes since parameters in simpler models may not be the same under a different climate. In highly glacierized basins, a higher (e.g., hourly) temporal resolution is necessary for accurate runoff modelling especially with respect to peak flow estimates, because of the enormous melt-induced diurnal discharge fluctuations. This aspect of temporal resolution is crucial in attempts to predict the changes associated with a warming climate, as diurnal melt-cycles are expected to be amplified, significantly increasing peak flows (Hock et al., 2005). The spatial aspect is important in complex topography in mass balance studies as well as in studies related to avalanche forecasting, erosion, solifluction, solute transport or vegetation patterns.

Generally speaking, significant advances in distributed melt modelling have been made in recent years, based on both temperature-index
Figure 2 Simulated and measured hourly discharge (m3 s$^{-1}$) of Storglaciären, Sweden, using different temperature-index and energy-balance models for the melt modelling and a linear reservoir model for water routing. Melt calculations are based on the classical degree-day method (a), a modified temperature-index model including potential direct solar radiation (b), a modified temperature-index model including potential direct solar radiation and global radiation (c), a simple energy-balance model (d) and a more sophisticated energy-balance model (e). Model performance is given in terms of the efficiency criterion R^2 (Nash and Sutcliffe, 1970). Also given are hourly measurements of global radiation (Wm2), wind speed (m s$^{-1}$), air temperature (°C) and precipitation (mm h$^{-1}$)

Source: Models (a–c) from Hock (1999); model (d) from Hock and Noetzli (1997); model (e) from Hock (1998).
and energy-balance methods. Such approaches require further testing and refinement and would benefit from more extensive exploitation of increasingly available of remote sensing data, for both model input and verification. The need to extrapolate meteorological input data places major limitations on the quality of model simulations (Charbonneau et al., 1981). Often, wind speed and relative humidity are assumed spatially constant and air temperature is varied with altitude according to a simple lapse rate. The inclusion of wind models may aid in better interpolating meteorological input data, although the interfacing may be difficult due to differences in spatial resolution.

Energy-balance models yield sufficiently accurate estimates of the spatial and temporal patterns of incoming radiation in mountain terrain. However, the determination of turbulent fluxes and surface albedo are currently identified as the most prominent uncertainties. Increasing evidence suggests that existing boundary layer theory does not apply over the typically inclined glacier surface, which is subject to gravity winds. Much uncertainty concerns the determination of exchange coefficients and the consideration of stability effects. Evidence seems to mount that the turbulent heat fluxes over valley glaciers are larger than existing theory predicts. Further research needs to be directed towards the development of realistic concepts in the glacier environment based on careful re-evaluation of existing data sets and, in particular, more eddy correlation studies on valley glaciers. Determining accurate spatial distributions of turbulent fluxes is an even larger challenge that needs to be tackled. Besides the problems in data extrapolation, accounting for the spatial and temporal variations in exchange coefficients is a yet rather unexplored issue. Despite a large variety of proposed albedo parameterizations, future research needs to focus on quantifying physical controls on glacier albedo and the development of models capturing the full range of spatial and temporal albedo variability. In addition, energy gain due to advected heat may not be negligible on valley glaciers and needs further investigation.

Few studies have attempted to link the variations in ablation and energy partitioning at the point scale to larger-scale atmospheric conditions (e.g., Hoinkes, 1968; Cline, 1997; Hannah et al., 1999). Such relationships may be exploited for forecasting the timing of melt-induced runoff from mountainous regions, as large-scale air mass characteristics are more predictable than local wind, temperature and relative humidity patterns. Further research will need to focus on the links between the different energy fluxes and the synoptic weather pattern, and investigate their potential for operational use in melt forecasting.

Acknowledgements

Björn Holmgren contributed through critical discussions. Heinz Blatter, Andrew Fountain and Christian Pluess are acknowledged for valuable comments on the manuscript. Careful reviews were provided by Ian Willis and an anonymous reviewer.

References

Braithwaite, R.J. and Zhang, Y. 1999: Modelling changes in glacier mass balance that may occur as a result of climate changes. Geografiska Annaler 81A, 489–496.

— 1990: Comparison of melt energy computations and ablation measurements on melting ice and snow. *Arctic and Alpine Research* 22, 153–62.

— 2000: Analysis of a 3-year meteorological record from the ablation zone of Moteratschgletscher, Switzerland: energy and mass balance. *Journal of Glaciology* 46, 571–79.

